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Purpose. A recent paper proposed a model for hydraulic flow in the
eye, claiming this could affect intravitreal drug administration. The
impact of flow on various modes of administration was investigated in
a physiologically accurate ocular model of the rabbit eye.
Methods. Hydraulic flow initiated at the hyaloid was simulated in a
three-dimensional finite element model including effects of convec-
tion and episcleral efflux. The interrelation between hydraulic and
vascular clearance was treated using a method in which choroidal
clearance is effected by simple boundary conditions, diminishing
computing requirements. Drug diffusion coefficient and clearance
rates for the choroid and anterior chamber were varied.
Results. Volumes and velocities of fluid flow permeating the vitreous
agreed with literature values. Hydraulic flow impacted clearance of

compounds not eliminated by the choroid; agreement with experi-
mental data justified assuming perfect aqueous humor mixing. Hy-
pertensive pressure produced up to a maximum 4-fold change in
vitreal drug content from an intravitreal device depending upon lo-
cation, orientation of the releasing surface, but was less important
than vascular clearance strength and diffusion coefficient.
Conclusions. The influence of intraocular pressure (IOP)-induced
hydraulic flow is not likely to be of clinical significance for low mo-
lecular weight drugs that are efficiently cleared by the choroid.

KEY WORDS: intravitreal drug delivery; Darcy’s law; hydraulic
flow; vascular clearance;

INTRODUCTION

A recent study (1) measured the hydraulic permeability
of ocular tissue and commented on the impact of Intraocular
pressure (IOP) induced hydraulic flow on intravitreal drug
transport. Using a unidimensional model, they concluded
flow-induced convection accounts for up to 30% of drug
transport. Previous studies neglected convection (2–6). It has
been reported (7) that posterior juxtascleral administration of
AL-3789 (Anecortave Acetate, 4,9(11)-pregnadien-17A,21-
diol-3,20-dione-21-acetate, CAS Registry Number 7753-60-8,
molecular weight 386) is effective for treating age-related
macular degeneration. It was desired to estimate whether or
not hydraulic effects would also be important when modeling
delivery from simulated intravitreal devices.

Simulations are carried out over a range of pressure us-
ing simple boundary conditions applied to selected surfaces of
a three-dimensional (3-D) ocular structure. Vascular clear-
ance by the choroid was also simulated. A previous study (8)
showed the influences of hydraulic and vascular effects can
interact rather intricately. This approach is now extended to
3-D, and the impact of placement of the device can be eluci-
dated. Literature studies have been used to compare predic-
tions of the hydraulic model.

METHODS

Software

Symbolic manipulations to derive closed-form expres-
sions were assisted by Macsyma version 2.4 for Windows
(Macsyma, Inc., copyright 1999) (www.ma.utexas.edu/users/
wfs/maxima.html, accessed 10/02/02). Finite element simula-
tions were conducted using FlexPDE (PDE Solutions; P.O.
Box 4217, Antioch, Calif., www.pdesolutions.com), version
3.01f1, as used previously when simulating tissue partitioning
(9).

Equations

Ignoring at first vascular effects, the concentration vari-
able C and each of the vectorial components for the velocity
appear in the convective diffusion equation:

div�D grad�C�� −
→
V � grad�C� = dt�C� (1)

where D is the diffusion coefficient and
→
V is the velocity

vector (time dependence ignored for steady state). Fluid ve-
locity is obtained by solving for creeping flow in a porous
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ABBREVIATIONS: PDE, FEM, Partial Differential Equation, Fi-
nite Element Method; 1-D, 2-D, 3-D, One-Dimensional, Two-
Dimensional, Three-Dimensional; r, three-dimensional spatial coor-
dinate (M); r0, r-coordinate where the vitreous begins in the reference
model (M); r1, r-coordinate of the vitreous/choroid boundary in the
reference model (M); r2, r-coordinate of the outer scleral boundary of
the reference model (M); �, thickness of the vascular layer (choroid)
(M); C, Concentration of diffusant (variable submitted to finite ele-
ment method) (Kg/M3); Cb, concentration of diffusant (actual physi-
cal concentration) (Kg/M3); Cfin, concentration predicted by the finite
vascular (choroid) model (Kg/M3), comprised of C1(r) in the vitreous,
C2(r) in the choroid, and C3(r) in the sclera; Cinf concentration pre-
dicted by the infinitesimal vascular model (Kg/M3), comprised of
C4(r) in the vitreous and C5(r) in the entire region beyond the vitre-
ous; Dn, diffusion coefficient for drug in region n (1- vitreous, 2-
choroid, sclera) (M2 s−1); P0, parameter reflecting strength of vascular
clearance for the infinitesimal vascular model, applied as boundary
condition outside the vitreous (M s−1); Ph, parameter reflecting
strength of clearance by aqueous humor turnover, applied as bound-
ary condition on the hyaloid membrane annulus (Ms−1); �, parameter
reflecting strength of vascular clearance for the finite vascular model;
applied as a sink to the convective diffusion equation in the vascula-
ture (s−1/2); p, pressure variable (Pa); pinlet, value of hydrostatic pres-
sure in excess of the episcleral venous pressure (Pa); p1,2, hydrostatic
pressure in region 1, 2 of the reference model (Pa); a1,2, b1,2, coeffi-
cients for r-dependence of pressure in region 1,2 (Pa M, Pa); Vf,
velocity of fluid (aqueous humor) percolating through the system (M
s−1); Kh,n, hydraulic conductivity of region n (units of length2 ex-
pressed already having been divided by the percolating fluid viscosity
assuming the viscosity of water); Jn, parameter combining hydraulic
and diffusive properties of region n (M); �, combines hydraulic, dif-
fusive properties of region 2 and vascular clearance (-); kv, elimina-
tion rate of drug from the vitreous after bolus injection (s−1); �,
concentration ratio, inner sclera / outer vitreous (infinitesimal cho-
roid model); (−), �, permeating fluid viscosity (Pas).
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medium. Using Darcy’s law, the local volume flux rate of fluid
is related to the local pressure gradient by the equation (10):

→
V = −

Kh

�
grad�p� (2)

where p is the scalar pressure variable, Kh is the permeability of
the porous medium to fluid flow and � is the fluid viscosity.
Assuming conservation of matter, div(

→
V ) � 0 (11), thus:

div�Kh

�
grad(p)� = 0 (3)

Solution Schema

Eqs (1) and (3) are submitted to the finite element
method by one of two schemas:

(1) Time-Dependent Simulations. Pressure is deter-
mined by solving Eq (3) subject to regional hydraulic conduc-
tivity and boundary conditions. The fluid velocity resulting
from Eq (2) is imported into a separate procedure solving Eq
(1) subject to regional diffusion properties and concentration
boundary conditions.

(2) Steady-State Simulations. Eqs (1) and (3) are solved
simultaneously, applying all regional property assignments
and boundary conditions for both pressure and concentration
at once.

Problem Geometry/Materials Properties

The mesh was constructed to represent the rabbit poste-
rior chamber, with a device placed either 1) near the hyaloid
or 2) behind the lens (Fig. 1a). The side device resembles the
Vitrasert (12) and is similar to the placement in previous
studies (3,6). The central device has been proposed recently
(5). Half the ocular sphere was constructed, cut along the
symmetry plane. Ocular dimensions are from reference (2).
The thickness of the sclera was set to a uniform value of 0.3
mm as assumed in reference (1). Fig. 1 illustrates the fluid
velocity distribution obtained. Regional property assignments
are given in Table I. The vitreal diffusion coefficient for Fluo-
rescein was taken from Reference 13. Polymer diffusion co-
efficients were calculated using 6 × 10−11 M2 s−1 for 67 kD
Dextran (14) and assuming diffusivity scales with the cube
root of the molecular mass. Scleral diffusion coefficients were
set to a value of 1/6th the corresponding vitreal value, consis-
tent with estimates from transport studies through the sclera
for small (15) and large (16) molecules, except as indicated.

Boundary Conditions

15 or 25 mmHg pressure is applied to the hyaloid, simu-
lating normotensive and hypertensive pressures. Outer scleral
pressure (episcleral venous pressure) was 10 mmHg; the 5
mmHg drop is comparable to rabbits (17,18) and humans
(19). A condition (1.16 × 10−8 Kg / M2 - s) was applied to the
releasing surface (circular area 1 × 10−6 M2) producing a drug
flux of 1 �g /day. Drug and fluid flux were prohibited through
every other surface of the device and the lens (fluid flux also
prohibited from the releasing surface). Drug is eliminated by

the anterior pathway, choroidal clearance, and episcleral out-
flow. Anterior clearance is effected by setting the normal
derivative of concentration to –Ph C, where

Ph ≡ f/Ah (4)

Table I. Materials Properties Assignments

Diffusion coefficient M2 s−1
Hydraulic conductivity

cm2/(Pa s)

Vitreous Denoted DCv Kh,v/� � 8.4 × 10−7

Fluorescein 6.0 × 10−10 (Reference 1)
Dextrans:
10.5 kD 1.1 × 10−10

67 kD 6.0 × 10−11

157 kD 4.5 × 10−11

Sclera Denoted DCs Kh,s/� � 1.5 × 10−11

DCs � DCv/6 unless
indicated otherwise (Reference 26)

Fig. 1. a) Cross-sectional view of the rabbit geometry showing the
placement of intravitreal devices. Vectors indicate direction and ve-
locity of permeating fluid; maximum length arrow corresponds to 6 ×
10−8 M s−1. Dimensions are in mm. b) Close-up of one of the devices.

Hydraulic Flow and Vascular Clearance Influences on Intravitreal Drug Delivery 1637



where Ah is the hyaloid area (6 × 10−5 M2) and f is the turn-
over rate of aqueous humor, 3.7–6 × 10−11 M3 s−1 (20,21).
Assuming the aqueous compartment to be well mixed, Ph was
set to 8 × 10−7 M s−1 for steady state simulations. The normal
derivative of concentration on the outer sclera is set to
–Vf,normal C * �, where � is the ratio of drug concentration of
the inner sclera divided by that of the outer vitreous, the
fraction of drug surviving choroidal clearance (� becomes
smaller as P0 becomes larger). The functional dependence of
� upon P0 is derived in the appendix, and represents an ex-
tension of the method developed previously for planar geom-
etry (8), in which the impact of the choroid is represented by
imposing a concentration discontinuity (the infinitesimal cho-
roid model). The infinitesimal model was developed in order
to conserve memory and CPU requirements for the 3-D simu-
lations. A reference problem, consisting of either two or three
concentric shells representing an idealized spherical eye, is
solved exactly to derive the method and to elucidate the in-
teraction of vascular and hydraulic clearance.

Bolus Injection Simulations

The initial condition was a 0.5 �L spherical bolus behind
the lens on the symmetry axis, allowing use of cylindrical
coordinates; solution scheme 1) was used. Since the materials
whose vitreous clearance was simulated were not cleared by
the choroid (14,21), vascular clearance was not included. The
hyaloid clearance rate was varied from 10−8–10−5 M s−1, to
investigate the impact of transfer efficiency across the hya-
loid. The natural logarithm of the total drug in the vitreous
was regressed against time for the terminal phase of elimina-
tion to determine the elimination rate kv. For Fluorescein, the
period of time regressed was 12–24 h after the initial condi-
tion, with 1.2 h timesteps; for polymers the regression was
carried out over 3–14 days, with 1⁄2 day timesteps. Conver-
gence is achieved in about 150 timesteps consuming 30 min
CPU time (Pentium III 600 MHz).

Standard Reference Problem Simulations

The domain consists of either two or three concentric
shells: vitreous (3–7.8 mm), choroid (thickness 0.1 mm, if
present), and sclera (out to 8.1 mm). Material properties and
boundary conditions are in the Appendix. The pressure drop
(inner vitreous to outer sclera) was 15 mmHg. When the cho-
roid region was included (the finite choroid model), the con-
vective diffusion equation contains the term � 2 C (see Equa-
tion A-8); the value of � in the choroid was set from the value
of P0 using Eq (A-11). Expressions for the finite choroid
model were used to define the initial values for the concen-
tration variable, and the initial value for pressure was set to p
� pinlet everywhere. Three stages were used to arrive at the
solution: 1) zero fluid velocity and vascular clearance large
(�� 0.1); 2) nonzero fluid velocity and vascular clearance
large (�� 0.1); 3) nonzero velocity and vascular clearance
relaxed to its intended value. The outcome of each stage was
used to provide initial estimates for the beginning of the suc-
ceeding stage. About 4–6 cpu minutes were required for con-
vergence (longer time for the finite choroid model) to obtain
agreement with the exact solution to within < 0.1%. The ref-
erence problem for the infinitesimal choroid model was also
solved in 3-D Cartesian geometry, to provide an estimate for

the accuracy of FlexPDE for the geometry that would be
required for solving the off-axis device problem; agreement
was obtained to within 0.5% with about 15 min CPU time.

Simulations for Intravitreal Devices

All device problems were solved in 3-D Cartesian geom-
etry. Simulations were carried out for all four device configu-
rations (central forward, central rearward, side forward, and
side rearward releasing) with applied pressure difference
(hyaloid to outer sclera) of 0, 5, and 15 mmHg. The hyaloid
clearance Ph was set to the well-stirred value, and the vascular
clearance rate P0 was varied over the range 10−10 – 10−4 M s−1

to simulate drugs having a range of vascular clearance prop-
erties. Convergence was achieved in 15–45 min CPU time.

RESULTS AND DISCUSSION

Pressure

The vast difference in hydraulic conductivity between
vitreous and sclera produces a nearly uniform pressure dis-
tribution in the vitreous and a steep ramplike dropoff to zero
across the sclera along outward radial paths.

Fluid Velocity

Vectors plotted in Fig. 1 depict flow direction and mag-
nitude. Flow is highest near the hyaloid inlet and diminishes
as fluid is diluted in the vitreous. Maximum velocities occur
along surface boundaries; for example, the abrupt drop be-
tween the outer vitreous and the inner sclera at the hyaloid.
Fig. 1b illustrates velocity tends to be higher adjacent to de-
vice surfaces. This is the result of not specifying no-slip
boundary conditions as is done for the full Navier-Stokes
equation (22). We can only impose boundary conditions on
pressure and must live with whatever consequences this has
on velocity. More complicated methods beyond the scope of
this paper (23) would be required to improve upon this. The
integral of flow of fluid across the hyaloid membrane (no
device) at 5 mmHg applied pressure drop is 1.9 × 10−12 M3 s−1

(0.11 �l min−1), 3-5% of the aqueous humor production, com-
parable to experimental estimates (13,24) for the rate of fluid
seepage from the aqueous to the vitreous compartments in
the rabbit eye of 0.1–0.13 uL min−1. The fluid velocity di-
rected outward through the retina at the posterior pole is 3.5
× 10−9 M s−1, comparing favorably with the experimental es-
timate (13) of 3.9 × 10−9 M s−1.

Clearance Rates after Bolus Injections

Fig. 2 summarizes the bolus injection studies. Target win-
dows indicate expected clearance rates kv. Target vertical ex-
panse is determined by the uncertainty in kv (14,21), horizon-
tal expanse by the uncertainty in Ph assuming perfect aqueous
mixing. Clearance is diffusion limited beyond 10−7 M s−1. Set-
ting scleral diffusion to be 1/6th that in the vitreous (top four
curves), simulations come close to the desired targets, agree-
ment being less good for larger polymers. Scleral diffusion for
larger polymers might be much slower. Simulations for 157
kD hit the target if scleral diffusivity is reduced to DCv/100;
material available for episcleral efflux is reduced. Further de-
creases in DCs do not produce slower clearance rates; at this
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value of DCs, transport through the sclera is effectively
halted. The importance of convection is confirmed by the
curve for zero hydraulic flow (lowest), which falls significantly
below the target. There may come a point where further in-
creases in molecular weight may fail to increase drug resi-
dence because the balance shifts from diffusion to convection.
(Note that the value of DCs is immaterial in the case of zero
pressure and zero vascular clearance, since the sclera under
these circumstances is passive to the clearance process.) Thus,
in the absence of vascular clearance, the hydraulic effects of
the model are confirmed, and the use of a simple boundary
condition Ph to represent anterior clearance, and its numeri-
cal magnitude, are justified by the experimental data.

Steady-State Concentration in the Vitreous from an
Intravitreal Device

Fig. 3 shows concentration at steady state for zero pres-
sure (solid) and 5 mmHg (dashed) for each device. Increasing
pressure pushes contours away from the hyaloid. Contours
are perpendicular to the retina when clearance by the choroid
is much slower than from the hyaloid (Fig. 3a), and parallel to
the retina when the opposite is true (Fig. 3b).

Influences of vascular clearance, pressure, diffusivity, de-

vice placement and orientation on the steady state vitreous
drug content can be elucidated from Fig. 4. The net impact of
pressure is to restrict the dynamic range of vitreous drug con-
tent to within narrower limits. Transport-limiting situations
occur at either extreme of vascular clearance. Once P0 in-
creases beyond a given value (which depends upon the vitre-
ous diffusivity), transport becomes diffusion limited. In the
limit of low P0, clearance becomes dominated by anterior
losses, held fixed by Ph. Anterior losses dominate the faster
the diffusivity. Drug content for fast diffusing molecules effi-
ciently cleared by the choroid (P0 > 10−6 cm s−1) is indepen-
dent of pressure. For compounds like Fluorescein (clearance
estimates ranging from 2.3–5.5 × 10−5 cm s−1 (13,25)), the
effect of pressure can be ignored. Pressure becomes impor-
tant only for drugs not efficiently cleared by the choroid,
more so for slow diffusivity, with effects ranging from 40–75%
depending on device placement/orientation, with more in-
triguing profiles occurring from side placement. The subtle
behavior of the curves in Fig. 4 is confirmed from the results
of the standard reference problem (Appendix, Fig. A-3). The
only difference is that the reference problem did not include
anterior clearance; thus, in the absence of hydraulic pressure,
drug content increased ad infinitum. The lack of effect of
pressure for small molecules that are effectively cleared and
the inflection points is reproduced.

Fig. 2. Simulations of intravitreal bolus injections for compounds that
are not cleared by the choroidal vasculature plotted vs. the strength
of the hyaloid clearance boundary condition Ph. (_ . _) Fluorescein in
the presence of an uptake inhibitor; (___) 10.5 kD Dextran; (__ __) 67
kD Dextran; (- - -) 157 kD Dextran. Also shown for the latter is the
impact of reducing the diffusion coefficient in the sclera to 1/100th

that in the vitreous (central dashed curve) and the effect of neglecting
hydraulic flow (lowest dashed curve). Target boxes indicated are
from the literature data and assume first-order elimination by perfect
mixing in the anterior chamber.

Fig. 3. Contour plots of log of concentration at steady state; solid
contours are for zero pressure, dashed for 5 mmHg. a) Central device
releasing toward the retina, P0 � 10−8 cm s−1; contours represent
changes of 0.3 decadic log units, contour c corresponds to 10−3 Kg M3.
b) Side device releasing toward the hyaloid, P0 � 10−6 cm s−1; con-
tours represent changes of 1 log unit, contour e corresponds to 10−3

Kg M3.
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Steady-State Drug Content of the Sclera

Although not designed to match concentration in the
choroid, the infinitesimal choroid model provides a fair as-
sessment of drug content in the sclera. For fast diffusers, pre-
dictions of scleral drug content from either choroid model
agree to within 90% for the entire range of 0.001 < � < 1. For
slow diffusers, agreement is within 90% over the narrower
range 0.001 < � < 0.1. � � 0.1 corresponds to P0 � 3 × 10−5

cm s−1, comparable to the value for Fluorescein. Thus, the
infinitesimal choroid model underestimates the drug content

of the sclera for large drugs that are cleared comparable to or
less efficiently than Fluorescein by less than 10%, with better
agreement for small drugs.

CONCLUSION

Flow predicted through the vitreous is so small that it
contributes to diffusion only for large molecules or for small
molecules not efficiently cleared by the choroid. The effect is
greatest near the hyaloid, the fluid inlet, where velocity is
highest. Exterior efflux can be as important as convection.
This became apparent in the bolus studies; when the convec-
tive term was left out of the diffusion equation and the scleral
efflux condition was still applied, the clearance rate was still
increased significantly for large molecules.

There is some question regarding the unphysicality of
nonzero permeating fluid velocity at tissue interfaces. Fluid
velocity peaks at the pressure inlet along both hyaloid/lens
and hyaloid/ sclera boundaries, also along device surfaces.
Since fluid velocity is extremely small, momentum transfer
represented by nonzero tangential velocity is negligible. Dar-
cy’s law flow velocity is not true local velocity but rather
averaged mass flux. The device is stylistic only, having ne-
glected the attachment tab that would influence flow. If the
tangential velocity is zero at interfaces, current predictions
would represent overestimates of the flow effect on steady-
state drug concentration. Its influence on concentration is
small for normotensive pressure even allowing for tangential
fluid velocity. The fact that it may be overestimated because
of this error, together with the low impact of the effect, sup-
port the idea that flow can be neglected entirely as being
unlikely to have clinical significance for quickly diffusing
drugs.

Perhaps of more benefit from this study is the principle
of estimating vascular clearance effects—understanding their
interaction with hydraulic flow, or the ability to determine the
relationship between regional vs. boundary condition clear-
ance in the absence of flow. The infinitesimal choroid model
allows predictions of drug content in tissue layers beyond the
choroid, where previous models have been limited to follow-
ing descriptions of the vitreous cavity. This facility will be
especially important were one to adapt this approach to simu-
lating other modes of administration even more intimately
involved with vasculature, such as transdermal or intracranial
delivery.
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Fig. 4. Total drug content of the vitreous hemisphere at steady state
vs. vascular clearance strength P0. Solid curves: Device releasing to-
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Simulations were conducted at 0, 5, or 15 mmHg applied pressure as
indicated in italics. a) Central placement; b) side placment.
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APPENDIX

Standard Reference Geometry

The domain consists of a vitreous shell encapsulated by a
choroidal shell, and, outermost, the sclera (see Fig. A-1a).
Pressure and input drug flux conditions are applied at the
innermost boundary, representing the hyaloid and device.
Zero pressure is applied to the outermost boundary, where
hydraulic-assisted drug efflux occurs. Two models for simu-
lating choroidal effects are used. In the finite choroid model,
clearance is effected by the sink term � 2C in the convective
diffusion equation. Drug concentration varies continuously
across the domain (Fig. A-1b). In the infinitesimal choroid
model, clearance is effected by applying a boundary condition
at the outer vitreous, and by imposing a discontinuity on
physical concentration matching the finite choroid model.
Materials properties appropriate for each situation, including
sink conditions where applicable are:

Finite Choroid

D � D Kh � Kh,1 No Sink 0 < r < r1

D � D2 Kh � Kh,2 Sink��2 * C r1 < r < r1 + �
D � D2 Kh � Kh,2 No sink r1 + � < r < r2

Infinitesimal Choroid
D � D1 Kh � Kh,1 0 < r < r1

D � D2 Kh � Kh,2 r1 < r < r2

where D1 and D2 and Kh,1 and Kh,2 are the diffusion and
hydraulic coefficients in the vitreous and sclera, respectively.
Boundary conditions (apart from matching concentration/flux
internally) are as follows:

Finite Choroid
p � pinlet flux � q0 r � r0

p � 0 flux � Vf*C r � r2

Infinitesimal Choroid
p � pinlet flux � q0 r � r0

Added sink flux � P0*C r � r1

p � 0 flux � Vf*C r � r2

We have applied the drug input at this boundary (applied
here so as not to require an additional surface) to simulate
delivery from an intravitreal device. The text equation Eq (3)
in spherical coordinates is:

1

r2

�

�r �r2 �p
�r� = 0 (A-1)

providing a radial pressure dependence in each region as fol-
lows:

p1,2 �r� =
a1,2

r
+ b1,2 (A-2)

where p1(r) is the pressure in the vitreous and p2(r) is the
pressure in the choroid/sclera. The coefficients a1,2, b1,2 are
obtained by matching pressure and fluid flux at the appropri-
ate boundaries as follows:

Match pressure at r = r0 :
a1

r0
+ b1 = pin (A-3a)

Match pressure at r = r1 :
a1

r1
+ b1 =

a2

r1
+ b2 (A-3b)

Match pressure at r = r :
a2

r2
+ b2 = 0 (A-3c)

Match velocity at r = r1: −
Kh,1

�
grad�p1�r���

r=r1

= −
Kh,2

�
grad�p2�r���

r=r1

(A-3d)

Fig. A-1. a) Problem domain, sub-domains, regional materials prop-
erties assignments and boundary conditions for the spherically sym-
metric reference problem; the small wedge portion shown is not to
scale. Hydrostatic (intraocular) pressure and input drug flux condi-
tions are applied to the innermost boundary, representing the hyaloid
membrane and an intravitreal device. Zero pressure is applied to the
outermost boundary, where hydraulic-assisted drug efflux occurs
through the outer sclera. The vascular clearance is effected by assign-
ing a sink term � 2C to the convective diffusion equation in the
choroid region (finite choroid model) or by applying a flux boundary
condition to the outer vitreous boundary (infinitesimal choroid
model). b) Sample elevation plots for physical concentration along a
path normal to the spherical surfaces. (_ _ _) Finite choroid model
varies continuously across the entire domain. (____) Infinitesimal
choroid model imposes a discontinuity, � in the concentration at the
outer vitreous boundary, calculated to match the results of the finite
choroid model.

Hydraulic Flow and Vascular Clearance Influences on Intravitreal Drug Delivery 1641



where � is the viscosity of fluid. Coefficients that simulta-
neously solve equations (A-3a–d) are:

a1 = −
Kh,2 pin r0 r1 r2

	p
(A-4a)

a2 = −
Kh,1 pin r0 r1 r2

	p
(A-4b)

b1 =
pin r0[(Kh,2 − Kh,1)r2 + Kh,1 r1]

	p
(A-4c)

b1 =
Kh,1 pin r0 r1

	p
(A-4d)

where

	p = r0[(Kh,2 − Kh,1)r2 + Kh,1 r1] − Kh,2 r1 r2 (A-4e)

The steady-state convective diffusion equation in the vitreous
and sclera becomes:

1

r2

�

�r �Di r2 �Ci

�r � =
DiJi

r2

�Ci

�r
(A-5)

where i denotes a specific region (1 for vitreous, 2 for choroid
or sclera) and where the Ji’s are given by:

J1,2 ≡
Kh,1,2 a1,2

�D1,2
(A-6)

The solution of Equation (A-5) is:

Ci(r) = Ei e
−Ji

r + Fi (A-7)

The convective diffusion equation in effect in the choroid for
the finite choroid model is:

1

r2

�

�r �D2 r2 �C
�r � =

D2J2

r2

�C
�r

+ �2C (A-8)

which though insoluble can be approximated as follows:

1

r2

�

�r �Dr2�C2

�r � ≈
D2J2

r1r
�C2

�r
+

r1
2

r2 �2C2 (A-9)

This equation is readily solvable, though the solution is not
particularly simple:

C2 �r� ≅ E2 r
�v−1+

J2

r1

2
�

+ F2 r
−�v+1−

J2

r1

2
�

,

v ≡�4�2r1
2

D2
−

2J2

r1
+

J2
2

r1
2 + 1 (A-10)

Thus, the appropriate expression for concentration in each
region is summarized as follows:

Finite Choroid, Cfin

Expr1: C1 (r) = E1 e
−

J1

r + F1 r0 < r < r1

Expr2: C2 (r) ≅ E2 r
�v−1+

J2

r1

2
�

+ F2 r
−�v+1−

J2

r1

2
�

r1 < r < r1 + �

Expr3: C3 (r) = E3 e
−

J2

r + F3 r1 + � < r < r2

Infinitesimal Choroid, Cinf

Expr4: C4 (r) = E4 e
−

J1

r + F4 r0 < r < r1

Expr5: C5 (r) = E5 e
−

J2

r + F5 r1 < r < r2

Applying boundary conditions on concentration, and match-
ing flux/concentration at internal boundaries, the following
equations are obtained, which when solved simultaneously
provide the coefficients Ei, Fi:

Finite Choroid

Eq1: −D1

dC1

dr
�

r=r0

= q0

Eq2: C1
r=r1
= C2�r=r1

Eq3: −D1

dC1

dr �r=r1

= −D2

dC2

dr �r�r1

Eq4: C2�r=r1+� = C3�r=r1+�

Eq5: −D2

dC2

dr �r=r1+�

= −D2

dC3

dr �r=r1+�

Eq6: −D2

dC3

dr �r=r2

=
D2J2

r2
2 C3�r=r2

Infinitesimal Choroid

Matching flux at r = 0 Eq7: −D1

dC4

dr
�

r=r0

= q0

Matching value at r = r1 Eq8: C5�r=r1
= � * C4�r=r1

Matching flux at r = r1 Eq9: −D1

dC4

dr �r=r1

= Po C4�r=r1
− D2

dC5

dr �r=r1

Matching value at r = r1 + � (absent)

Matching flux at r = r1 + � (absent)

Matching flux at r = r2 Eq10: −D2

dC5

dr �r=r2

=
D2J2

r2
2 C5�r=r2

The quantity � allows for a discontiuity at the vitreous/scleral
boundary. Using the finite choroid model Expr1–3 above,
equations [Eq1–Eq6] are solved simultaneously to obtain the
coefficients E1–3, F1–3:
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E3 =

−2�1�q0r0
2r1�r1 + �

r1
�

J2

r1
+1+�

2
e

J2� 1

r2
+

1

r1+�
�+J1� 1

r0
−

1

r1
�

	f

F3 =

2��1 + 1��q0r0
2r1�r1 + �

r1
�

J2

r1
+1+�

2
e

J2

r1+�
+J1� 1

r0
−

1

r1
�

	f

	f = 2��1 + 1��2r1
3�r1 + �)��r1 + �

r1
��

− 1�e
J2

r1+�

−� �2�2r1
3�r1 + �) + D2J2�J2 − r1����r1 + �

r1
��

− 1�
−D2J2�r1��r1 + �

r1
��

+ 1� �e
J2

f2 �1

Separately, using the infinitesimal choroid expressions
Expr4,5 the equations [Eq7 − Eq10] are solved simulta-
neously to obtain the coefficients E4,5, F4,5:

E4 = −
q0r0

2

D1J1
e

J1

r0

F4 =

q0r0
2

D1J1

e
J1

r0��D2J2� − �P0r1
2 + D1J1��1�e

J2

r2 + ��1 + 1��D1J1 + P0r1
2�e

J2

r1�

	i

E5 =
q0r0

2�

	i
e
�J2� 1

r1
+

1

r2
� +

J1

r0
�

F5 =
q0r0

2(� + �2)
	i

e
�J2

r1
+

J1

r0
�

	i = e
J1

r1 ��D2J2� − P0r1
2�1

�e
J2

r2 + ��1 + 1�P0r2e
J2

r1�

The quantities �1, �2 are, for the time being 1 and �, where �
is the discontinuity in concentration imposed at the outer
vitreous boundary for the infinitesimal choroid model. Select-
ing quotients avoids round-off errors:

�r1 + �

r1
��

=
�r1 +���

r1
�

; � r
r1
��

=
rv

r1
�
; etc.

Distances are on the order of 10−3 M; the exponent v is a few
times to many times larger than unity. It is better to take the
exponent of the ratio of two small numbers than to take the
ratio of their exponents. This is the reason why the radial
dependence in Expr2 was subsumed into the expressions for
E2 and F2 above. To determine a relationship between P0 and
� that will apply the same sink effect on the vitreous, note that
the value of the 1/r term in the vitreous is the same for both
models (E1 � E4). To obtain the same value for concentra-
tion in the vitreous requires F1 � F4. An expression for P0 can
be obtained from this equality, or by solving the relationship
Expr1�Expr4 evaluated at r � r1:

E1 = −
q0e

J1

r0 r0
2

D1J1

F1 =

q0r0
2e

J1

r0
−

J1

r1	��
r1 + �

r1
��

�D2��� + 1�r1 − J2� + 2D1J1���� − 1�r1�r1 + �� − J2�r1 − ���

−�D2��� − 1�r1 + J2� − 2D1J1���� + 1�r1�r1 + �� + J2�r1 − ���
�e

J2

r2 �1 +

�
�D2��� − 1�r1 + J2� − 2D1J1���� + 1�r1 − J2�

−�r1 + �

r1
��

�D2��� + 1�r1 − J2� + 2D1J1���� − 1�r1 + J2��e
J2

r1+��r1 + ����1 + 1� 

D1D2J1	��

r1 + �

r1
�v

��� + 1�r1 − J2���� − 1�r1�r1 + �� − J2�r1 − ���

−��� − 1�r1 + J2���� + 1�r1�r1 + �� + J2�r1 − ���
�e

J2

r2 �1

−�r1 + ����� − 1�r1 + J2���� + 1�r1 − J2���r1 + �

r1
��

− 1�e
J2

r1+� ��1 + 1�



E2r
��−1+

J2

r1

2
�

= q0r0
2e

J1

r0
−

J1

r1

	 �r1 + ����� + 1�r1 − J2�e
J2

r1+� ��1 + 1�

− ��� + 1�r1�r1 + �� + J2�r1 − ���e
J2

r2 �1


� r
r1�

J2

r1
− 1+�

2

r1*	f

F2r
−��+1

2

−
J2

r1� = q0r0
2e

J1

r0
−

J1

r1

	 �r1 + ����� − 1�r1 − J2�e
J2

r1+� ��1 + 1�

− ��� − 1�r1�r1 +�� − J2�r1 − ���e
J2

r2 �1


� r
r1�

J2

r1
− 1+v

2

r1*	f
�r1 + �

r1
��
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The quantity � is the ratio of the concentration behind versus
in front of the choroid occurring by vascular clearance in the
limit of zero pressure. By taking the zero pressure limit we are
stating that the influences of these two physiologic effects are
separable, and that the influence of vascular clearance can to
a good approximation be stated by taking this limit. In the
limit of J2 → 0, an exact solution to Equation (A-8) is:

Expr2,0: C2,0�r� =
1
r�E2,0 sinh� �r

�D2
� + F2,0 cosh� �r

�D2
��

where ,0 has been added to denote zero pressure. Zero pres-
sure counterparts of Expr1 and Expr3 are:

Expr1,0: C1,0�r� =
E1,0

r
+ F1,0 Expr3,0: C3,0�r� =

E3,0

r
+ F3,0

The coefficients E1,0, F1,0, etc. are determined by a similar
scheme as for the case of applied pressure, evaluating Ex-
prs1–3,0 using Eqs(1–6); only Eq6 has changed, its right hand
side now being zero in the absence of applied pressure. The
resulting coefficients are as follows:

E1,0 =
q0r0

2

D1

F1,0 =

q0r0
2� D2(�2r1�r1 + �� − D2 + D1�sinh� ��

�D2
�

+��D2�D2� − D1�r1 + ���cosh� ��

�D2
��

D1D2r1	f,0

E2,0 =
q0r0

2

�D2

���r1 + ��sinh���r1 + ��

�D2
�

−�D2 cosh���r1 + ��

�D2
��

	f,0

F2,0 = −
q0r0

2

�D2

���r1 + ��cosh���r1 + ��

�D2
�

−�D2 sinh���r1 + ��

�D2
� �

	f,0

E3,0 = 0

F3,0 = −
q0r0

2�

�D2	f,0

, 	f,0

≡ ��D2 − �2r1�r1 + ���sinh� ��

�D2
�

− ��D2 �cosh� ��

�D2
��

Thus, the desired expression for � is obtained; the infinite r1

limit produces the planar result:

� =
C2,0 |r=r1+�

C2,0 |r=r1

=
�r1

��r1 + ��cosh� ��

�D2
� − �D2 sinh� ��

�D2
�

→
limr1→�

sech� ��

�D2
� (A-12)

Coefficients E1,0, E3,0 etc., can be verified by evaluating the
corresponding expressions E1, E3, etc. in the limit of zero
pressure (J1, J2 → 0). Zero pressure coefficients for the in-
finitesimal choroid model are:

Expr4,0: C4,0�r� =
E4,0

r
+ F4,0

Expr5,0: C5,0�r� =
E5,0

r
+ F5,0

E4,0 =
q0r0

2

D1

F4,0 =
q0r0

2�D1 − P0,0r1�

D1P0,0r1
2

E5,0 = 0

F5,0 =
q0r0

2

P0,0r1
2 * �2

�
�D2J2���1��r1�v� − 1� − r1

2 + �J2� + r1��2 − 1��r1v� − J2���e
2J2

r2

+ �2�2r1
4�r1 + �� − D2J2r1

2��1
2

+ D2J2�r1�v� + 1� − J2� − 2�2r1
3�r1 + ��r1�1��1 + 1�eJ2� 1

r1
+

1

r2
�

−�D2J2��r1�v� − 1� + J2� + 2�2r1
4�1��r1 + ����1 + 1�eJ2� 1

r2
+

1

r1 + �
�

+2�2r1
4�r1 + ����1 + 1�2eJ2� 1

r1
+

1

r1 + �
�

�
P0 �

r1
2�e

J2

r2 �1 − e
J2

r1 (�1 + 1)��e
J2

r2 �1�r1�r1 + ���v� − 1� − J2�r1 − ���

−e
J2

r1+� �r1 + ����1 + 1��r1�v� − 1� + J2�

� � ≡
�r1 + �

r1
�v

+ 1

�r1 + �

r1
�v

− 1
(A-11)
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P0,0 =
�D2 denomf,0

�D2 r1 sinh� ��

�D2
� − �r1�r1 + �� cosh� ��

�D2
�;

lim
r1→�

P0,0 = ��D2 tanh� ��

�D2
�

where the expression for P0,0 is determined by solving the
equality F1,0 � F4,0.

Adaptation of the Solution for the Finite Element Method
for the Infinitesimal Choroid. The variable submitted to the
finite element method must be continuous across boundaries.
Thus, to produce the discontinuity in concentration at the
outer vitreous, we redefine the physical concentration as fol-
lows:

Cb = C r 
 r1

Cb = � * C r > r1 (A-13)

where C is the dependent variable in the Finite Element
Method (FEM). An accurate description of how the FEM
works requires that we change two of the following members
of the set Eq1–Eq10:

Eq8: C5|r=r1
= � * C4|r=r1

→ Eq8�: C5|r=r1
= C4|r=r1

Eq10: −D2

dC5

dr |
r=r2

= −
D2J2

r2
2 C5|r=r2

→ Eq10�: −D2

dC5

dr |
r=r2

= −
D2J2

r2
2 � C5|r=r2

The quantity � is removed from Eq8. The concentration in the
sclera is overestimated by the FEM by the factor �; to provide
the correct magnitude for hydraulic sink condition at the ex-
terior sclera, this factor must be introduced into Eq10� and
also into Eq6 of the corresponding finite vascular model.

Eq6: −D2

dC3

dr |
r=r2

= −
A2Kh,2

�
C3|r=r2

→ Eq6�: −D2

dC3

dr |
r=r2

= −
A2Kh,2

�
� C3|r=r2

All ten coefficients E1–5, F1–5 are modified, � appearing in
many new places. These modified coefficients, denoted E1�,
F1�, etc., are obtained by setting �1 � �, �2 � 1 in the cor-
responding unprimed expression. The expression for P0,
Eq(A-11), is also modified. Figure A-2 illustrates a represen-
tative example of the radial dependence of the steady state
concentration profile for the various models. The expressions
used are for the FEM (�1 set to �, �2 set to 1). The total drug
in the vitreous is obtained by integrating Expr1 from r�r0

to r1:

Mv = 4� �r0

r1
r2C1�r�dr = 4� �r0

r1
r2�E1e

−
J1

r + F1�dr

= 4��
1

r0

1

r1�−s−4��E1 e−J1s + F1�ds

=
2�

3 	2F1�r1
3 − r0

3�

+ E1�r1�2r1
2 − J1r1 + J1

2�e
−

J1

r1 − r0�2r0
2 − J1r0 + J1

2�e−
J1

r0

+ J1
3�exp_int�−

J1

r1
� − exp_int�−

J1

r0
�� �


(A-14a)

with the zero pressure limit being slightly simpler, as ex-
pected:

Mv,0 = 4� �r0

r1
r2C1�r�dr

= 4� �r0

r1
r2�E1,0

r
+ F1,0�dr

= 2��E1,0�r1
2 − r0

2� +
2
3

F1,0�r1
3 − r0

3��
(A-14b)

Figure A-3 illustrates predictions for the total drug content of
the vitreous compartment versus � using Equations A-14a
and A-14b. The appearance of this figure is unchanged re-
gardless of the assignment of the value of �1. When �1 is
assigned the value of � (mimicking the FEM solution), the
variation in Mv at any value of � is only slightly higher than
the value predicted when �1 is assigned the value of unity
(finite choroid solution without discontinuity). The maximum
disparity is <1% for slowly diffusing and <0.3% for rapidly
diffusing materials. To predict the total scleral drug content,
the volume integrals are:

Fig. A-2. Sample prediction for the steady-state concentration profile
for the situation D1 � 6 × 10−11 M2 s−1, D2 � 1 × 10−11 M2 s−1, and
�� 0.04. The functions for both the finite and infinitesimal choroid
models are compared, for both zero pressure and 15 mmHg. a) Entire
domain; b) Zoom plot focusing mainly on the outer shell region.
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where Ms,fin is the prediction for the content of the drug in the
sclera by the finite choroid model. A similar expression for
Ms,inf, the prediction for the content of the drug in the sclera
by the infinitesimal choroid model, is identical to Equation
A-15 with the substitution of E5 for E3 and F5 for F3. From
the ratio of these expressions, making appropriate substitu-
tions for E3, E5, F3 and F5, the following result is obtained:

Ms,inf

Ms,fin
=

	f� e−
J2

r1 + �
+

J1 + J2

r1

2	ivr1�r1 + �

r1
�
�J2

r1
+ v + 1�

2 (A-16)
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